
NASA Contractor Report

ICASE Report No. 89-45

181926

.........:ICASE

NUMERICAL OPTIMIZATION IN HILBERT SPACE USING

INEXACT FUNCTION AND GRAD_NT EVALUATIONS

Richard G. Carter

(NASA-CR-Idl V2_) NUMERICAL

HIL_EPT SPACE USI.,',JG!_'CXACT

GRAnIFNT EVAL!JATINNS _indl Report

25 p

Contract No. NAS1-18605

June 1989

OPTIMIZATION IN

FUNCTION AND

(ICASE)

CSCL 12A

G3/64

N90-I0040

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

National Aeronaulics and

Space Adminislration

Langley Research Center

Hamplon, Virginia 23665-5225



z

6

..... : fT:i [:_ [



Numerical Optimization in Hilbert Space

Using Inexact Function and Gradient Evaluations

Richard G. Carter*

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23665

Abstract

Trust region algorithms provide a robust iterative technique for solving noncon-

vex unconstrained optimization problems, but in many instances it is prohibitively

expensive to compute high accuracy function and gradient values for the method. Of

particular interest are inverse and parameter estimation problems, since function and

gradient evaluations involve numerically solving large systems of differential equations.

We present global convergence theory for trust region algorithms in which neither

function nor gradient values are known exactly. The theory is formulated in a Hilbert

space setting so that it can be applied to variational problems as well as the finite di-

mensional problems normally seen in trust region literature. The conditions concerning

allowable error are remarkably relaxed: relative errors in the gradient values of 0.5 or

more are allowed by the theory. One form of the gradient error condition is automati-

cally satisfied if the error is orthogonal to the gradient approximation. A technique for

estimating gradient error and improving the approximation is also presented.

*This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in

Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.





1 Introduction

An increasingly important area of computational mathematics involves problems requiring

both numerical simulation and numerical optimization techniques. For example, in the

design of a large fiexible structure such as the space station, engineers may derive an ODE

or PDE model of the structure based on a number of design parameters, define an objective

(cost) function for the possible designs based on some criteria of interest (weight, flexibility,

controllability, cost), and use a numerical optimization routine to find the "best" set of

design parameters. Often the differential equations involved in the model are not amenable

to analytic solutions, and therefore the calculation of objective function and gradient values

in the optimization routine will involve the numerical solution of a system of differential

equations. Problems of this type are common not only in structural design, but also in

control, parameter estimation, and image reconstruction, to name but a few areas. A number

of such problems are surveyed by Minkoff [11]. Among the points stressed in his study are the

very wide range of applications in which these problems are encountered, the computationally

intense nature of the simulations, and the wide availability of numerical packages such as

ODEPACK [7] which allow the user to specify the amount of computational accuracy desired

in the simulation. Clearly, "exact" function and gradient evaluations are not feasible in such

situations, and low accuracy evaluations may even be desirable in cases where computational

expense increases very rapidly with increased accuracy in the simulation. Equally clear is

the fact that sufficiently large errors will cause the optimization algorithm to fail.

Trust region algorithms for nonlinear optimization have been an increasingly popular

choice in recent years because of their elegance, efficiency, and robust convergence proper-

ties. In this paper, we establish global convergence results for a class of these algorithms

when neither function nor gradient values are computed exactly. The conditions concerning

allowable error are both natural and exceedingly mild. Although trust region methods are

most commonly applied to finite dimensional problems, in this paper we emulate Toint [19]

and present our analysis in a general Hilbert space setting so that the trust region algorithm



can, in principle, be applied directly to a variational (distributed parameter) problem rather

than to a finite dimensional discretization of the problem developed at an early stage of the

design process. A comparison of the relative merits of these two approaches is an interesting

research issue, but is beyond the scope of this paper.

Synopsis. In Section 2, we define our problem and present the trust region algorithm.

Our conditions for admissible error in function and gradient values are introduced and briefly

discussed. In Section 3, we present several properties associated with the computation of

trial steps from sequences of quadratic models. Using these properties and our conditions

concerning function and gradient error, we first establish that at least a subsequence of

the gradient approximations converges to zero, and then the stronger result that both the

sequence of gradients and the sequence of gradient approximations converge to zero. In

Section 4, we discuss implementation of the gradient error conditions, and suggest a technique

for directly estimating the gradient error if other estimates are not available. This technique

is particularly appropriate if gradients are computed using a finite difference procedure, and

can also be used to improve the accuracy of a given approximation. In Section 5, we discuss

a few of the possible generalizations of our theory. In Section 6, we summarize our results.

2 Preliminaries

Let H denote a real Hilbert space, and consider the problem

minimize f(x), (1)

zEH

for some functional f : H _ N. For a given vector z0 e H, let f2 be an open convex subset

of H containing the level set of f at z0- We assume

A.I

A.2

A.3

f is Fr6chet differentiable on f2,

f is bounded below, and ....

the Frgchet derivative of f, denoted f', is Lipschitz continuous on F/.
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Our trust region algorithm for solving (1) generatesa sequenceof iterates {Xk} by pro-

ducingand approximatelysolvingasequenceof constrainedquadratic modelproblems. That

is, ak+l = zk + sk for a step sk that approximately solves

minimizeek(ak + s): Ilsll _< Ak (2)

where Ak is a positive variable known as the trust radius and ek is a quadratic model of the

objective functional f about the point zk. Let (., .} denote the inner product on H, and let

[[" [I denote the associated norm or the induced operator norm. 0ur quadratic model ¢_ will

then be of the form

¢_(=_+ _)= A + <g_,_)+

where fk is our approximation to f(zk), g_ is our approximation to Vf(xk), the gradient of

f at xk, and Bk is a self-adjoint operator from H into H approximating V2f(xk).

If fk # f(xk), we must specify conditions on how much error is allowable. These condi-

tions will apply to the difference between successive function values rather than to errors in

the values themselves. Define the actual function reduction

aredk(ak) = f(xk)- f(zk + sk),

the computed function reduction

(4)

creddsk) = A - h+l,

and the predicted function reduction

(5)

predk(sk) = ek(zk)- ek(xk + sk). (6)

We then require two conditions to be satisfied at every iteration for some appropriately

chosen constants _1,1 and (1,2:

lareda(sk) - credk(sk)] < (S,x predk(sk),

and

[aredk(sk)- credk(sk)l _< _j, zlcredk(sk)t.

(7)

(8)



Since direct estimates of [aredk(sk) -- credk(sk)l are probably not available in most ap-

plications, in practice (7) and (8) should be replaced by

IA+I- f(xk+l)[ + IA - f(xk)[ _ (/,lpredk(sk) (9)

and

IA+x - f(zk+x)l + ]A- f(xk)l _ _s,2lcredk(sk)l. (10)

If gk # Vf(zk), we must similarly specify conditions on how much error is allowable in the

gradient. Define

ek = #_ - Vf(xk). (ii)

We will show that the condition

<ek,g_> <___, (12)

will lead to the global convergence result liminfk_o IlgkH = 0 for appropriately chosen

constant _'g, while the stronger result limk-_oo IIg_ll= limk__ ItW(_)ll = 0 can be obtained

Ilekl/< _g. (13)
IIg_ll-

by using the stronger condition

Our algorithm is structured as follows.

Algorithm(l): Trust region method using inexact function and gradient eval-

uations.

Let the constants 0 < rh < r/2 < 1 and 0 < 71 < 1 < 3'2 be prespecified, and select the

error control constants _1,1,_f,2, and _g such that

_g + _I,1 < 1 - r/2, (14)

and

_j,,2 < 1.

Select an initial guess z0eH and an initial trust radius A0.

gradient values f0 and go, and compute or initialize Bo.

4
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Compute initial function and



For k = 0, 1, ...until "convergence" do:

(a) Determine an approximate solution sk to problem (2).

(b) Calculate predk(sk) and credk(sk). If necessary, recompute fk+l and/or fk to

greater accuracy until (7) and (8) are satisfied.

(c) Compute the ratio

cred_(sk)

Pk- predk(sk )

(d) If Pk < 7/1, then set Ak+_ C (0,7_Ak],

(16)

else if Pk < r/2, then set Ak+l C (0, As],

else set Ak+x E [Ak, 72Ak].

(e) If Pk < rh, then the current step is unacceptable. Set xk+l = xk.

Otherwise, the iteration is successful. Set xk+l = zk + sk.

(f) If xi+l # as, then compute gk+l and compute or update Bk+l.

Otherwise, retain the current values by setting fk+l = fk, gk+i = gk, Bk+l = B_.

End Loop.

At this point, a number of comments should be made concerning the algorithm.

1. The maximum, error levels given by (14) and (15) are extremely mild. A typical value

for r]2 in an algorithm might be 0.1, in which case we could select G = 0.5, _1,1 = 0.3,

and _L_. = 0.99 so that we are allowed a relative error of one half in the gradient

approximation and a similarly large error in the difference between successive function

values.
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. Conditions (7), (8), (12) and (13) are different than the conditions used in [12], [19]

and [3]. All of these papers consider only the case fk = f(xk). Instead of (12) and

(13), [12] uses the consistency condition

{m_ _ m*} _ lim II klt = o (17)
k---,,, c_

for the case H = _", while [19] uses the condition

Ile, ll_<rn.in{nl,n2Ak} (18)

in the very general setting of Hilbert space with simple bounds. Condition (13) is used

in [3], but the weaker condition (12) is not considered.

3. In practice, the trust region defined in (2) is often replaced by the scaled trust region

IIDksll _ Ak for some invertible linear operator Dk. For simplicity we take Dk to be

the identity in this paper, but note that our results can still be established provided

(12) and (13) are replaced by

(D-il ek , D;l gk)
D-1 -1( k gk,Dk gk)

<G (19)

and

119;'ekll_ (20)
liD;1gkll

respectively, and some restrictions are placed on the sequence of scalings {Dk}. A

complete treatment of (20) for the case fk = f(xk) and H = _" can be found in [3].

4. In algorithm (1), no requirement is made that gk be recomputed to greater accuracy

following unsuccessful iterations. This is an important property, since even for the case

where function and gradient values are known exactly, unsuccessful iterations are quite

common and merely indicate that the trust radius should be adjusted.

5. On the other hand, conditions (7) and (8) may require function values to be recomputed

to greater accuracy at any iteration. Although these conditions are therefore less

=
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elegant than (12) and (13), they are still fairly natural and can be relatively easily

implementedif error in f is controllable.

The optimal strategy for enforcing (7) and (8) will of course depend on such factors as

the reliability of error estimates and the amount of work involved in recomputing fk

to a greater accuracy. For example, the following simple procedure could be used to

implement step(b) of algorithm(l).

Procedure 2.

Let a E (0,1) be prespecified. Given x_,sk,¢k, and an estimate for [fk- f(ak)l, do

the following.

(1) Calculate predk(sk) , and set emax = _1,i predk(sk).

(ii) If necessary, recompute fk to greater accuracy so that the inequality [fk-f(xk)[

(1 - a)emax holds .

(ill) Compute fk+i so that lfk+i - f(xk+i)] _< a emax.

(iv) Compute credk(sk). If condition (10) is satisfied, then exit procedure, else reduce

emax and return to (ii).

End procedure.

Clearly, if error estimates are unreliable _l,i should be chosen fairly small. On the other

hand, _I.2 should usually be selected close to one to avoid unnecessary recomputations

of fk and fk+l. If such recomputations are very expensive, one might consider taking

a close to one.

3 Convergence Results

In order to establish our results, we will need several properties regarding our trial steps sk.

These properties are

1

predk(sk) -->  cllb ll min{Ak, lbd/e_.}, (21)



and

{li/n_flIgkI[ > 0 and lira Ak = 0} ==_ lim (sk, gk) = 1, (23)k- oo k- oo Ilskllllg ll
for some constants c, E (0,1),c2 E (0, oo), and C3 _ [1,2]. Obviously, (21), (22) and (23) are

directly dependent on both the methods used to compute trial steps and the properties of

the sequence of quadratic models chosen. For the special case H = _n, a few comments are

in order.

Condition (21) is well knows (see, for example, [18]) and is usually established by assum-

ing an upper bound of the form

IIB_tl < c_ (24)

However (21) can also be established [2] given an upper bound of the form

(Bkgk, gk) __ C2(gk, gk) (25)

Condition (23) can be interpreted geometrically as stating that steps sk tend in direction

toward -gk as [[skll/Hgkl] goes to zero. This property is established in [3] by assuming an

upper bound on {HBk[t}, but can also be established using the milder condition (25) for one

of the popular classes of techniques of computing trial steps (generalized dogleg methods).

In the context of inexact function and gradient values, assumptions such as (24) or (25)

are quite reasonable: if first order information is not known accurately it is only natural to

directly enforce an upper limit on our approximation to second order information. In this

paper, however, we make no assumptions about how (21), (22), and (23) are obtained. The

only assumption we directly use concerning the sequence {Be} is that

at every iteration for all s E H and some constant c4. First note the following simple results.

Lemma 3.1. Let f satisfy assumptions A.1 and A.3 and let c5 be the Lipshitz constant

associated with Vf. Then we have

1

predk(s ) - aredk(s) _< _(c, + cs)[[sl[ 2 - (ek, s). (27)
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Proof. Using an integral representationof predk(s) - aredk(s),wehave

1 ]opred.(s)- aredKs ) = -(gk, s) - -_(Bks,s) + (Vf(xk +)_s),s)d),

= -(ek, s)- _{Bksl ,s} + Ll{Vf(zk + As) - Vf(zk),s)dA. (28)

Using (26), the Cauchy-Schwarz inequality, and the Lipshitz continuity of V f, we have

1 /0predk(_)- aredK_) _< -(ek,_) + c411sll2 + IlVf(x_+ _) - Vf(xk)llll_lld_

1 £_< -(e_,_)+ c411_11'_+ csll_llll_lld_, (29)

which immediately establishes (27). []

Lemma 3.2. Let f satisfy assumptions A.1, A.2, and A.3, and let f/o be the interior of the

level set of f at Xo. We then have that Vf is bounded on 120.

Proof. Let cs be the Lipschitz constant associated with V f, and let c6 be such that f(z) k

c6Va E rio. Now, suppose Vf is unbounded on rio so that 3_- E rio with IIv/(_)ll" >

8c4(f(ao) - c6). Define g = _--_Vf(_-). For all a sufficiently small that _- + _- E fl, we have

> 4__llVf(e)ll, 1 2_ - _cslI_ll

1 _ ilvf(__)ll_(1_ 2)> 4cs

> 2a(1 - 2)(f(zo ) -- c6).

(30)

Now, the final term in (30) is positive for all a E (0, 2) and hence g + g E f_ for a = 1. But

this leads to the contradiction f(g) - f(g + _-) > f(m0) - c6, so Vf cannot be unbounded on

_o. []

We now establish that {gk} is not bounded away from zero.

Theorem 3.3. Let f satisfy assumptions A.1, A.2, and A.3, let the steps generated in Algo-

rithm (1) satisfy (21), (22), and (23), let {Bk} satisfy (26), and let the function evaluations



satisfy (7) and (8). Then our algorithm generates a sequence of iterates satisfying

provided condition (12) holds.

lira inf Ilg_ll= 0 (31)
k---_ oo

Proof. Let K, denote the set of successful iterations. First notice that predk(sk ) > 0 and

from (16), credk(sk) >__rhpredk(sk) Vk e K,. From (8) we have

(1 - (ya)creda(sk) < aredk(sk) < (1 + (Ia)credk(sk) (32)

Combining (32) with (16) and (21) yields.

aredk(sk) _> (1 -- _/,2)r h predk(sk )

1

_-_ _C1711(1 -- {._,2)llgktl min{Ak, Ilgkll/c=} (33)

for all k E K,.

Next, define Ok such that

cos Ok- <--gk,sk> (34)
IlakllIlskll

and wk E H such that wk = 0 if sin Ok = 0 and

wk - sin Ok + cos Ok (35)

otherwise. Notice that (gk, wk) = 0 , <ek, wk> = <--Vf(zk), wk>, and II_kll= 1 for sin Ok ¢

0, and that

gk

s,, = ll_kll(--cos0ki]-_11+ sin0kwk).

Now, from (7) and (16) and the fact that preG(sk) > 0, we have

(36)

I - pi
predk(sk ) -- credk)sk)

predk(sk)

preG(sk) - aredk(sk) + aredk(sk) -- credk(s_)

predk(sk)

< predk(sk ) - aredk(s_) + (L_.
- pred_(sk)

(37)

10
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Using (3), (6), (26), and (27) gives

1-pk _< (S,l+

< (s,l+

Substituting (36) into (38) yields

1 --Pk

}(_,+ _)ll_[l_- (_,_)
½(Bksk,

1-(e_, _) + _(_,+ _s)lls_ll=
-(g_,_) + ½c,ll_ll'

(38)

_cosek(e_, g_)- II*kll sinOk(ek, wk)+ ½(c4 + cs)ll,_ll 2

<:'_+ _n_ncoso,- g-_i: I7_-_lisin 0k<g_---_7£ ) T _-_-_11_II----_
Ilgklt k_k,

.i_ek a c5)_cose,,_ + l-rF_(vf(x,,),,,,,,) + _(_,,+
= (S,1 + _,k,y_, 1 (39)

cosek+ _ll_ll/llg_]l

Now, suppose liminfk_+= llgkH > 0. Since f is bounded below, (33) implies that

limkeK, Ak = 0 and hence limk_+= Ak = 0. But if limk__._ Ak = 0, from (23) we have

limzx_--.o cos0k = 1 and limlxk--.o sin 0k = 0. By Lemma 3.2 and the Cauchy Schwarz inequal-

ity, {Vf(zk), wk} is bounded, and hence from (14) and (22) we have

lim cosOt_ + _(Vf(zk), wk} + ½(e, + cs_3-k_'ttg_ll
lim (1 - Pk) < (J"* + txh--.0A___o - cos0_ + ½_(_Vxk)2/llgkll =

< 0,_ + (_k,g,,) (40)
- (gk,g,,)
< (._a+_g< l-r/2,

and hence Pk > r/2 for all sufficiently large k. But this is a contradiction since Pk > rl2 =e,,

Ak+t >_ Ak. Hence, liminfk_.oo Ilg_llcannot be greater than zero. []

The final result of this section uses the stronger error condition (13) to establish the

stronger result limk__,_ IlVf(_k)ll = 0.

Theorem 3.4. Let f satisfy assumptions A.1, A.2, and A.3, let the steps generated in

Algorithm (1) satisfy (21) and (22), and the function evaluations satisfy (8). Then (13)

and (31) imply

lim llgkll= lim IlVf(_k)ll = 0. (41)
k---+oo k--+ e_

Proof: First note that from (13) with any _'9 < 1 we can immediately obtain the equiva-

lences (liminfk--,_ Ilgkll : O) ¢::* (liminfk__,_, IlVf(x_)ll = 0 ) and (limk--,oo Ilg_ll = O) ¢=*

11



(limk...=, IIW(=k)il = 0). Define e = }(1 - (g)/(1 + (_). Since liminfk_ Ilgkll= 0, for any

m with Ibmll¢ 0 there exists_ >_ m for whichIb_+lll ---elbmlland 119kll> _llgmllvk e

[m,_ I. Using (22) and (33) we have

f(xm) - f(xm'+l)

> 1_ "_c_rh(1-Q,=)llgkllmin{/Xk, llgk]t/c=}
k= rn,

{}1_> Ncl_l(1- Cs,,)_llg..ll min Ib_ll, _ Ibmll
k=rn C3 C2

(42)

From the triangle inequality we have

Ib_ll -< IIg_- g_+_ll+ Ib_+_ll

-< Ib_ - g_+_ll+ _llgmll. (43)

Rearranging terms, substituting gk = ek + Vf(xk), and again applying the triangle inequality,

we have

(1 - _)llg_ll -< Ilg_- g_+lll

-%<lfW(=..)- W(=_+,)II + t1_,_11+ I1_+_11
m

_< _ IIW(=,,+,)- W(x,,)ll + I1_,,,11+ Ile_+,ll
k----m,

_< _, _ I1,_11+ I1_11+ lle_+,ll
k=m

1
Using (13) in this equation with ¢ = _(1 - ('a)/(1 + (a) and Ib_+,ll -- _llg,,ll yields

Ib_lt -> ![(1 - _)llg_ll+ 11_.,11+ I1_+111]
k= rn C5

> llg,-,,l__l[(1 - e) ll_,.,ll t1_+111IIg_+,ll- cs Ibmll Ib_+,ll lb,-II

_> Ibmll[__ __ ¢ _ (_]
C5

> lb=ll [1- ¢ - _(_+ ¢)]
C5

> Ib_ll 1(__ 4_).
-- 125

(44)

(45)

12
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Substituting into (42) gives

f(z,.,,)- f(xm+l) > cl[Igmll 2, (46)

where

and hence

{1(18"1--_ _C1_1(1 -- ¢y,2)C l"13J.n 2 C365 ' '

1

_< e-cT(f(x,,,)-/(z_+l)). (48)

Now, {f(zk)} is nonincreasing and bounded below so that f(xk) --+ f* for some f*. Hence for

any rn, either g,,, = 0 or [[g,_][ _< _(f(x,=) - f*), and limk--.oo [[gkl] limk--,oo [[_7f(ak)[[ = 0.

[]

4 Implementing the gradient error conditions

In terms of global convergence results, (13) is dearly superior to (12) and should be en-

forced whenever possible. The availability of error estimates will of course depend on the

application, but we point to the increasing availability and use of high quality software

such as ODEPACK [7] which allow the user to prespecify desired levels of accuracy in each

component of the differential equation being solved.

13



Figure 1 : Sr for _g-=0.1, 0.3, 0.5, and 0.8.

Condition (12), although leading to the weakerconvergenceresult liminfk-.oo HgkH= 0,

hasa number of interestingproperties.

First notice that if gk is a Galerkin approximation to Vf(xk), condition (12) is automat-

ically satisfied since (ck, -- 0. Second, (12) is a much milder condition than (13) unless

Cg is close to one. For example, define

1

(49)

and

S'p(Cg,Vf(:=k)) =--{gk: (ek,gk) <_Cgigk,gk)}. (50)

These sets can be interpreted geometrically for Vf E _2. Figure 1 shows S'r for a variety

of values of Cg while figure 2 shows Sp for the same values of C*g. Figures 3 and 4 directly

compare & and Sp for Cg = 0.1 and 0.5. For small values of ¢'g, condition (12) is significantly

milder than (13). For larger values of Cg, the difference is less pronounced.

14



Figure 2 : 5'p for Cg = 0.1, 0.3, 0.5, and 0.8.

Figure 3 : Sp and Sr for ¢, = 0.1.

15



Figure 4 : Sp and ST for (g = 0.5.

Third, consider that (12) can be written as

1- (Vf(z_),g_) <_ _. (51)

But (Vf(zk), gk) is simply the Gateaux differential of f at xk with increment gk:

(Vf(xk),g_) = lim -1 [f(x_ + egk) -- f(xk)] • (52)
e--*0 C

Hence, if error estimates are not available from other sources, (Vf(xk), gk) may be approx-

imated by a finite difference formula and substituted into (51). Moreover, if the estimate

for {Vf(xk), gk) is sufficiently accurate, we can improve our gradient approximation gk by

replacing it with the scaled gradient

(Vf(xk), g_) (53)

so that

16
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gh

gh <_h,_D=0

Figure 5 : Gradient correction through the projection operation (53)

This approach seems particularly attractive in the event that H = _'* , the fk values are

known very accurately, and gk is being approximated by finite differences. After computing

a first approximation to gk by, say, forward differences using n extra function evaluations,

a central difference approximation to (Vf(zk), gk) using two additional function evaluations

can be computed to validate the accuracy of gk. If (12) is violated, then the algorithm can

henceforth use central difference approximations to gk. Notice that the normally difficult

problem of selecting an appropriate perturbation size ¢ in the finite difference procedure is

simple in this case, since (gk, gk> can be used as a rough scale estimate for (Vf(zk),gk).

Following Dennis and Schnabel [5] we write

(vf(xk), gk> +  gk)- f(x - (55)

and chose an _ that we expect will perturb two-thirds of the accurate digits of f. If cr is the

relative error in function evaluations, we want f(zk + ¢gk)- fk .'_ crl/3[fk[, and an appropriate

17



¢ is then

e = 1/3 IAl/(gk, gk). (56)

In addition to the possibility of estimating (_Tf(xk), gk) via (55), some applications may

admit a direct computation of this quantity. Whenever the action of ff on a single vector

can be computed with less expense and/or more accuracy than gk, such an approach should

be considered.

We wish to reemphasize that the convergence results using (12) are significantly weaker

than the results using (13), and that (13) should be used whenever possible. If (12) is used,

then whenever gk becomes sufficiently close to zero to trigger the convergence tests used by

the algorithm, it should be recomputed to the maximum attainable accuracy to affirm that

Vf(xk) has also converged to zero.

5 Extensions To Theory

The conditions for allowable error in our algorithm have been formulated to be as simple and

lucid as possible, and we again point out that the upper limits (14) and (15) are exceptionally

mild. Due to the very broad range of potential applications, however, we should consider

whether any of the details of our theory can be further relaxed.

One extension that can be made to our theory is to enforce (7) only in expectation rather

than at every iteration. Similarly, condition (8) could be enforced only in the limit provided

the set _ is large enough to include all the iterates (some of which may be uphill from f(xo).)

Such a result is quite reasonable in that function values are only used to update the trust

radius At,, and mistakes in this procedure can be tolerated as long as they balance out in the

long run. Cognizant of the practical fact that computed error estimates in a simulation may

occasionally be very poor, such a stochastic theory might seem attractive, but we prefer not

to include it in this paper because it adds little insight to the analysis.

In contrast to the situation for function evaluations, a single sufficiently bad gradient

evaluation can cause the algorithm to fail. For example, if gk = --Vf(xk) at some iteration k,
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then our algorithm candecreaseAk indefinitely without everfinding anacceptablestep. One

might speculatethat a condition suchas (gk,_f(xk)} > 0 might be sufficient to guarantee

an acceptablestep will eventually be found (assumingfor the moment that function values

arecomputedexactly), but this turns out to beslightly too generala condition. As poidted

out in [3], the approximation g_ = _Vf(xk) may also cause the algorithm to fail. What

then is the most general condition guaranteeing an acceptable step will always be found?

Taking gk, Vf(xk), and Bk to be fixed, taking CI,1 = CI,2 : 0, and following the same general

approach as the proof Theorem 3.3, it is strMghtforward to establish that limAk_.oo(1 --Pk) =

limzxk--.0 _ Hence our algorithm is assured of finding an acceptable step for sufficiently
{gk,gk)"

small Ak if and only if gk is in the interior of Sp(1-rh, Vf(xk)). Note that Sp(1-rh, Vf(zk))

1  llvf(zk)ll, and recall that a typical valueis a sphere with center _ XTf(zk) and diameter ,_

for U1 is 0.001. Our "worst case" limit for a single bad gradient evaluation is therefore only

slightly more restrictive (from a practical point of view) than the requirement (ga, Vf(xk)) >

0. Of course, one should still strive for a more accurate approximation satisfying gk E

S_,(1- r/2, Vf(xk)) or g_ 6 S,(1- r12, Vf(xk)), but it is reassuring to know that the algorithm

has such a large margin for recovery from occasional mistakes in gradient error control.

A final slight extension to our theory comes from the observation that Theorem 3.4 is

proven using only the bound _g < 1 rather than eg < 1 - 772. Hence, we could obtain our

same strong convergence results limk_oo ngkH = liml,--,oo Hvf(xk)H = 0 using two different

bounds in (12) and (13). That is, we could require gk E Sp((g,_,Vf(xk))F'lSr((g,2, Vf(xk))

with (g,1 < 1 - r/_. and rig,2 < 1. This is a slightly larger set of admissible approximations

than Sr((g,_, Vf(x_,)).

6 Summary

Using the errorconditions (7), (8), and (12), we have established the result liminfk--._ Ngkll =

0 for our trust region algorithm using very mild assumptions. In particular, the requirement

that _g + _I,_ -< 1 - r/2 is exceptionally generous, as _g = 0.5 would typically correspond
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to only one significant bit in each component of gk for H -- _'_. Condition (12) may also

be automatically satisfied if gk is computed by a projection technique such as a Galerkin

method.

If error estimates for gk are not available through other means, (12) can be evaluated

through a one-dimensional finite difference test such as (53). In some applications, a separate

numerical formulation might allow the action of f_ on gk to be computed directly. Besides

allowing us to evaluate error condition (12), such approaches may allow us to improve each

approximate gradient using (51) provided our estimate of (Vf(zk), gk) is accurate enough.

The stronger convergence result limk__ ]lgkll = limk_oo llv/(xk)ll = 0 canbe obtainedby

using condition (13) rather than (12). We recommend that this condition be used whenever

possible. If a scaled version of the trust region algorithm is being used, gradient errors must

be measured in the norm induced by the rescaling.
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